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Abstract 
 
This paper treats a solution for the ill-posed (inverse) load determination problem for a time-varying load on a beam. 

The ill-posed nature of the problem causes numerical instability. Conventional numerical approach for solutions results 
in arbitrarily large errors in solution. The Tikhonov regularization method, which is a non-iterative stabilization tech-
nique, has been widely adopted for overcoming the ill-posed nature (or numerical instability). However, in this paper, 
we introduce an “iterative” regularization method, specifically, the iterated Tikhonov regularization method. The iter-
ated method is applied to the present load determination problem. The result of the iterative method is compared with 
that of the (non-iterative) Tikhonov regularization. The rate of convergence for the introduced iterative method turned 
out to be very fast. The accuracy and applicability of the introduced method are examined through a numerical experi-
ment. 
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1. Introduction 

For design and health monitoring of mechanical 
dynamic structures, one has to determine the real and 
exact time-varying external loads which act on the 
structural systems. However, not only extremely large 
magnitudes of loads, such as impact loads, but prob-
lems in the installation of load-measurement devices 
make it, in practice, sometimes difficult to directly 
measure the external dynamic loads. Accordingly, 
inverse procedures are needed for indirectly measur-
ing the time-varying loads.  

In general, in contrast to finding the displacement 
of a structural system subjected to given time-varying 
external loads, the (inverse) problem of determining 
external loads from the measured displacement is 
difficult in calculating accurate results. This would be 

mainly caused by the ill-posed nature (or instability) 
arising from the inverse determination problem: the 
solution lacks stability property. Thus, the solution of 
external load does not depend on the given measured 
data of dynamic response in a stable (or continuous) 
manner. In consequence, a small amount of noisy 
data in a measured dynamic response can be ex-
tremely amplified and may lead to unreliable solu-
tions of time-varying loads. For overcoming this dif-
ficulty of instability, it is essential to employ a stabili-
zation technique for stable solutions.  

There have been many research works on the 
modification of stabilization technique and the related 
inverse load determination problem. Inoue et al. [1] 
treat an inverse problem to estimate the magnitude 
and direction of impact load acting on a body of arbi-
trary shape based on the singular value decomposition. 
Wang et al. [2] present a predictive model based on 
the Tikhonov regularization method for determining 
the location and amplitude of an unknown impact 
load acting on a simply supported beam. Hashemi and 
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Kargarnovin [3] present the identification method for 
the amplitude of the impact load acting on a simply 
supported beam and its location using the genetic 
algorithm. Gunawan et al. [4] proposed two-step b-
spline regularization method for solving an ill-posed 
problem of impact-load reconstruction. Gunawan et al. 
[5] also proposed a method to approximate the im-
pact-load by quadratic spline approximation. For 
some load inverse problems, a method based on the 
least-square is adopted to recover the load acting on 
ceramic body armor [6].  

For the stable solutions, most of the research works 
depend on Tikhonov regularization method, charac-
terized as a non-iterative stabilization technique. 
However, in the present study, an iterative stabiliza-
tion technique is introduced and applied for obtaining 
the time-varying load on a simply supported beam. 
Specifically, we use the iterated Tikhonov regulariza-
tion method to yield numerical iterative solutions. 
The numerical result of the iterated Tikhonov regu-
larization is compared with that of the non-iterated 
Tikhonov regularization. A comparison study illus-
trates that the introduced iterated Tikhonov regulari-
zation is applicable to the inverse load determination 
problem. In addition, it provides more accurate nu-
merical solutions of time-varying loads acting on the 
beam than those of the non-iterative case of the Tik-
honov method.  
 
2. Review of the beam equation  

We consider a simply supported beam subject to an 
external load F (x,t), as shown in Fig.1. The beam is 
assumed to be of constant mass ρ per unit length hav-
ing linear viscous damping C, constant flexural stiff-
ness EI, and a span length L. Neglecting the effect of 
the shear deformation and rotary inertia, we have the 
equation of motion for Euler-Bernoulli beam, ex-
pressed as [7] 

 
2 4

2 4

( , ) ( , ) ( , ) ( , )v x t v x t v x tC
t t x

EI F x tρ ∂ ∂ ∂
+

∂ ∂ ∂
+ =   (1) 

 

 
 
Fig. 1. Definition sketch for a simply supported beam under 
the circumstance of external load. 

with the boundary conditions at x=0 and L: 
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In Eq. (1), v (x,t) stands for the vertical displace-

ment of the beam at a distance x and time t and F (x,t) 
for an external load acting on the beam.  

Suppose that a spatially concentrated time-varying 
load is applied at x a=  as depicted in Fig. 2. Eq. (1) 
then becomes 
 

2 4

2 4

( , ) ( , ) ( , ) ( ) ( )v x t v x t v x tC
t t x

EI f t x aρ δ∂ ∂ ∂
+

∂ ∂ ∂
+ = −   
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where δ

 
denotes the delta function. Based on the 

expansion theorem for orthogonal functions, we can 
expand the dynamic displacement v (x,t) as  
 

1
( , ) ( ) ( )n n

n
v x t x q tφ

∞

=
=∑   (5) 

 
where ( )n xφ  and ( )nq t  represent mode shape func-
tions (or orthogonal eigenfunctions) and modal dis-
placements, respectively, with the mode number n. 
After substituting the eigenfunction expansion (5) 
into Eq. (4), and the multiplication of ( )l xφ  and 
integration with respect to x over the beam length, we 
obtain an infinite set of equations of motion for the 
modal displacement ( )nq t : 

 
2

2
2 ( ),

1,2,...

( ) ( )2 ( ) n
n n

n n n n t

n

d q t dq t q t F
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ξ ω ω

=
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In Eq. (6), nω , nξ , ( )n tF  denote modal fre-

quency, the damping ratio and the modal load for the 
nth mode, respectively. The modal parameters can be  

 
 

 
 
Fig. 2. Spatially concentrated time-varying load acting on a 
simply supported beam. 
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expressed as follows:  
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The solution of Eq. (6) can be derived as the con-
volution integral:  
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with the zero initial conditions: ( ,0) / ( ,0) 0v x v x x=∂ ∂ = . 
In Eq. (11), 21n n nω ω ξ′ = − . Substitution of Eq. (11) 
into Eq. (5) gives the dynamic displacement v (x,t) for 
the beam, subject to a spatially concentrated time-
varying load acting at x a= :  
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3. Inverse formulation  

The need to formulate a functional relation be-
tween the time-varying dynamic load and the corre-
sponding dynamic response of the beam arises in 
connection with the inverse load determination. Sup-
pose that we measure a dynamic displacement of the 
beam at a fixed position x X= : this shall be denoted 
by ( ) ( , )Xv vt X t= . The time-varying load can then be 
determined by solving following integral equation: 
 

0
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t
X K t X f dv t τ τ τ= ∫   (13) 

 
where the kernel K of the integral Eq. (13) is defined 
as  
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Eq. (13) may be represented in abbreviated or 

symbolic form, as 
 

( )( )Xv t f= L   (15) 

where the operator L  is defined as  
 

0
( , ; ) ( )( )

t
K t X f df τ τ τ= ∫L   (16) 

 
The inverse problem formulated in Eq. (13) is a 

Volterra-type of integral equation of the first kind, for 
the time-varying load ( )f t . According to theory of 
integral equations [8], the “first” kind integral equa-
tion with the regular kernel such as K in Eq. (14) is 
“ill-posed” in the sense of stability. This leads to nu-
merical instability in solution, that is, the solution 
lacks stability property, which will strongly affect the 
performance of the inverse load determination. 
 

4. Calculation of spatially concentrated time-
varying load 

4.1 Non-Iterative stabilization: Tikhonov Regulari-
zation 

Since the load determination problem formulated 
herein is ill-posed, as mentioned in the previous sec-
tion, conventional numerical methods do not give 
stable solutions. For stable solutions, we first intro-
duce Tikhonov’s regularization method as a stabiliza-
tion technique. 

Tikhonov [9] introduced a functional M which has 
a damping term Ω with a positive real number λ, 
called the regularization parameter, to regularize (or 
stabilize) the Volterra, integral equation of Eq. (13): 
for a positive real number T, 
 

0 0

1/22
( , ; ) ( ) ( )

T t
XM K t X f d v t dt λτ τ τ= + Ω

⎧ ⎫
⎨ ⎬
⎩ ⎭

−∫ ∫ , (17) 
 

In Eq. (17), ( )Xv t  is assumed to be a known quan-
tity, or a measured displacement of the beam on a 
finite time-interval:  
 

(0, )TΓ = .  (18) 
 

The functional M in Eq. (17) is the Tikhonov 
functional in which the additional term Ω is defined 
as follows:  
 

2

0
( )

T
f t dtΩ = ∫   (19) 

 
It is known that Tikhonov functional M has a 

unique minimum f (t) and this minimum satisfies the 
integral equation of the second kind [9]: 
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* *( ( )) Xf f vλ + =L L L ,  (20)  
 
where *L  is the adjoint operator: for some function 
g, 
 

0

* ( )( , ; )
t

g g t dtK t Xτ∫=L .  (21) 
 

Eq. (20) can be solved to yield a stable solution of 
the time-varying load f (t) because the “second” kind 
integral Eq. (20) is known as a well-posed problem in 
the solution stability.  

 
4.2 Optimal choice of the regularization parameter: 

L-curve criterion 

According to the regularization theory, regulariza-
tion parameter λ for the Tikhonov regularization plays 
an important role in applying the regularization proc-
ess. In this paper, the L-curve criterion is introduced 
for choosing an optimal regularization parameter.  
The L-curve is represented as a log-log plot 
( )log , log

X
f v f−L of the norm of the residual ver-

sus the corresponding norm of a regularized solution. 
The log-log plot generally gives a typical "L" shape, 
and the optimal value for the regularization parameter 
is considered to be the one that corresponds to the 
corner of the curve [10, 11].  

 
4.3 Iterative stabilization: the iterated Tikhonov 

regularization 

In contrast to the non-iterative case discussed 
above, in this subsection, we introduce the iterated 
Tikhonov regularization, expressed as follows [8]: for 
a positive convergence parameter β, 
 

{ }* *
1( ( ) 0,1,2,...) ,      m X mI f v f mβ β+ + =+ =L L L  (22) 

 
In the process of iteration in Eq. (22), the initial 

guess for the desired load is assumed to be the zero 
function: f0=0. In Eq. (22), the number of iterations m 
is called the discrete regularization parameter. In Eq. 
(22), the convergence parameter β can be chosen, so 
that the size of the residual 

X
f v−L  is the same as 

the error level in the data: ,X Noisyf v δ− =L  where δ  
is defined as ,X X Noisyv v δ− ≤ . This process is known 
as Morozov’s discrepancy principle [8, 12].  
 

5. Numerical Experiments  

In this section, we will examine a numerical exam-

ple of the inverse determination of the spatially con-
centrated time-varying load f. For this purpose, we 
consider the following form of time-varying load, 
applied to the simply supported beam., as shown in 
Figs. 1 and 2, at x=0.25m: for convenience, σ  is 
chosen as 10-2, 
 

2 2

2
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The corresponding dynamic response becomes  
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τ
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≈
′
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∑

∫
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For the present numerical simulation, we choose 
M=10 in Eq. (24). The physical properties for the 
beam are given as EI=23KNm2, L=1m, ρ=48.2kg/m, 
and C=15ρ. A simple numerical integration in Eq. 
(23) gives the time history of the displacement of the 
beam, which is illustrated in Fig. 3(a): we choose 
T=0.2s.  

Now, our aim is to inversely determine the time-
varying load f in Eq. (23) by using measured data of 
the beam displacement in Eq. (24). However, in prac-
tice, the measured data for the displacement of the 
beam is always deteriorated by noise to an extent [11]. 

 

 
(a) Noise-free displacement 

 

 
(b) Noisy data with error level 3.2%, 

 
Fig. 3. Time history of vertical displacement of the beam in 
Eq. (24). 
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Let us denote the (noisy) measured data by ,X Noisyv . 
In the present numerical experiments, we randomly 
generate the measurement noises from electrical and 
thermal fluctuation and quantization error. The addi-
tive noise is assumed to have the normal distribution 
with zero mean. The error level for the measured data 
is usually defined as  
 

2,
2 0

2

100%   where    
TX Noisy X

X
dt

v v
v
−

× ⋅ ≡ ⋅∫   

 (25) 
 

In the study, the error level is chosen to be 3.2% 
and the time history of the noisy data is illustrated in 
Fig. 3(b).  

 
5.1 A Conventional numerical approach 

Now, we attempt to recover the time-varying load 
in Eq. (23) by using the dynamic response data in Fig. 
3(b). For the purpose, we directly discretize (13) with 
a conventional quadrature integration rule: we ap-
proximate Eq. (13) by  

 

0
( , ) ( ),     0,1, ,( )X i

j

i

ij i j jt h w K t f i Nv τ τ
=

== ∑ L   (26) 

 
where ijw  denotes quadrature weights and h is the 
sampling time h=T/N. h in Eq. (26) is chosen to be 
0.001s. 

It is convenient to rewrite Eq. (26) in the matrix-
vector form as  
 

=v Lf   (27) 
 

In Eq. (27), the symbols v  and f  represent col-
umn vectors of the beam displacement and the (un-
known) time-varying load, respectively. The symbol 
L  is a matrix relation from f  to v , which corre-
sponds to the operator L  in Eq. (16). The solution 
for Eq. (27) is illustrated in Fig. 4. As expected, we 
have an unstable solution. This instability in the nu-
merical solution mainly results from the inherent 
nature of the ill-posed problem in the sense of stabil-
ity. Thus, we move to the next subsection to investi-
gate a stabilization technique for obtaining stable 
solutions. 

 
5.2 Stabilization techniques 

In a similar manner to Eq. (26), Tikhonov’s regul- 

 
 
Fig. 4. Typical solution by a conventional numerical scheme 
(solid lines) and the exact solution (red-dashed). 

 
 

 
 

(a) L-curve for the Tikhonov regularization 
 

 
(b) L-curve for the iterated Tikhonov regularization 

 
Fig. 5. L-curve criterion. 

 
arization method in Eq. (20), is readily discretized as 
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(a) λ=10-10 

 

 
(b) λ=10-11 

 

 

(c) λ=10-13 

 
Fig. 6. Regularized solutions with Tikhonov regularization.  
Legend: The red-dashed and blue-dotted lines respectively 
stand for the exact solution f in Eq. (23) and the numerical 
solution with the Tikhonov regularization in Eq. (28). 

 
H Hλ + =f L Lf L v   (28) 

 
where H indicates Hermitian transpose. The numeri-
cal solution for the linear system (28) is depicted in  

 
(a) m=5 

 

 
(b) m=50 

 

 

(c) m=100 
 
Fig. 7. Regularized solutions with the iterated Tikhonov 
regularization with β=10-9.  
Legend: The red-dashed and blue-dotted lines respectively 
stand for the exact solution f  in Eq. (23) and the numerical 
solution with the iterated Tikhonov regularization in Eq. (29). 

 
Fig. 6 in which the noisy data of the beam displace-
ment in Fig. 3(b) is used for v  in Eq. (28): three 
different regularization parameters are presented for 
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the Tikhonov solutions. The most accurate solution 
can be found when the regularization parameter 
λ =10-11. This is confirmed by the result of the L-
curve criterion as shown in Fig. 5: the point λ =10-11 

in Fig. 5(a) is the one corresponding to the corner of 
the curve, as explained in section 4.2. 

The discretized form which corresponds to the iter-
ated Tikhonov’s regularization method in Eq. (22) is 
written as  

 
{ } 1( ( ) 0,1,2,...) ,      H H

m m mβ β+ + =+ =I L L f L fv   (29) 

 
Fig. 7 pictures the numerical results for Eq. (29) for 

three different numbers of iterations m: a positive 
convergence parameter β can be chosen to satisfy 
Morozov’s discrepancy principle [8, 12] as discussed 
in section 4.3, and in this paper the parameter is cho-
sen as 10-9. Among them, we find the most accurate 
solution when m=50. This is justified by the fact that 
m=50 corresponds to the corner of the curve in Fig. 
5(b): see section 4.2. 

Finally, we compare the accuracy of the two regu-
larization methods. The error for numerical solutions 
is usually defined as follows: 

 

2

2

2
2 0

( ) ( )
100

( )
  

where    

Exact Reg

Exact

T
dt

f t f t
err

tf
−

= ×

⋅ ≡ ⋅∫
  (30) 

 
where ( )Exactf t  and Re ( )gf t  denote the exact solu-
tion in Eq. (23) and the numerical solution obtained 
by using the regularization methods, respectively. 
From the calculation, the errors are found to be 
12.42% and 6.686% for the Tikhonov regularization 
method and the iterated Tikhonov regularization 
method, respectively. Thus, at least, in the present 
numerical experiments, it is concluded that more ac-
curate numerical solutions can be obtained by using 
the iterated Tikhonov regularization method rather 
than the Tikhonov regularization method.  
 

6. Conclusion 

We have introduced an iterative regularization 
method (the iterated Tikhonov regularization) to de-
termine the external time-varying load on a simply 
supported beam. By using the measured vertical dis-

placement of the beam, the time history of external 
load is determined. The numerical experiments dem-
onstrated that the iterated Tikhonov regularization 
method is able to yield a quite accurate solution, even 
though the measured response data is contaminated 
by noise. In addition, the convergence rate for the 
solution is very fast. At least in the case of the pre-
sented numerical experiment, we obtain a more accu-
rate solution from the iterated Tikhonov regulariza-
tion than that from the Tikhonov regularization 
method. 
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